Forecasting in VAR models with large datasets
نویسنده
چکیده
This paper deals with model selection and forecasting in vector autoregressions (VARs) in situations where the set of available predictors is inconveniently large to accommodate with methods and diagnostics used in traditional small-scale models. Available information over this large dataset can be summarized into a considerably smaller set of variables through factors estimated by the dynamic factor model. Even in the case of reducing the dimension of the data, the number of significant factors may still be large. To solve this problem Bayesian model selection methods are introduced to the VAR framework. Model estimation and selection of predictors is incorporated through a stochastic search variable selection (SSVS) algorithm which is easily implemented within the MCMC framework. We apply this method to a forecasting VAR with 128 potential predictors and show how variable/factor selection can save degrees of freedom and improve out of sample fit in high dimensional specifications that otherwise would suffer from the proliferation of parameters.
منابع مشابه
Forecasting GDP Growth Using ANN Model with Genetic Algorithm
Applying nonlinear models to estimation and forecasting economic models are now becoming more common, thanks to advances in computing technology. Artificial Neural Networks (ANN) models, which are nonlinear local optimizer models, have proven successful in forecasting economic variables. Most ANN models applied in Economics use the gradient descent method as their learning algorithm. However, t...
متن کاملR2N2: Residual Recurrent Neural Networks for Multivariate Time Series Forecasting
Multivariate time-series modeling and forecasting is an important problem with numerous applications. Traditional approaches such as VAR (vector auto-regressive) models and more recent approaches such as RNNs (recurrent neural networks) are indispensable tools in modeling time-series data. In many multivariate time series modeling problems, there is usually a significant linear dependency compo...
متن کاملComparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کاملEco 2009/31 Department of Economics Forecasting Large Datasets with Bayesian Reduced Rank Multivariate Models
The paper addresses the issue of forecasting a large set of variables using multivariate models. In particular, we propose three alternative reduced rank forecasting models and compare their predictive performance for US time series with the most promising existing alternatives, namely, factor models, large scale Bayesian VARs, and multivariate boosting. Speci cally, we focus on classical reduc...
متن کاملForecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models
Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007